** more Rome properties

Casa Di Marina

Vicolo del Cedro, Roma Rm, Lazio, Italy

Property Ref:
IRO141

Bedrooms:
1

Sleeps:
4

Pets:
No

Shortlist:

Main picture for Casa Di Marina
Photo of Casa Di Marina
  • Photo of Casa Di Marina
  • Casa Di Marina thumbnail 1
  • Casa Di Marina thumbnail 2
  • Casa Di Marina thumbnail 3
  • Casa Di Marina thumbnail 4
  • Casa Di Marina thumbnail 5
  • Casa Di Marina thumbnail 6
  • Casa Di Marina thumbnail 7
  • Casa Di Marina thumbnail 8


Description of Casa Di Marina

Elegant apartment in the typical district of Trastevere, famous for its inns and craft shops, located below the most scenic spot in Rome: Il Gianicolo. You are here in a pedestrian zone and 300 meters from the Tiber River Promenade. After crossing the river you can reach the world famous Roman monuments: Piazza dei Fiori, Piazza Navona, the Pantheon, Via del Corso, and the Trevi Fountain. A double room and the kitchen have no windows. In the kitchen there is a ventilation system. Jacuzzi in the living room. Equipped roof terrace.

Features of Casa Di Marina

  • 1 TV
  • Microwave
  • City of art
  • Hi-Fi system
  • Refrigerator
  • Vacuum cleaner
  • Central heating
  • Washing machine
  • Holiday apartment
  • Golf course nearby
  • Gas/electric cooker
  • Free internet access
  • Air conditioning unit
  • Consumption costs excl.
  • Quality garden furniture
  • Kitchen: Hot and cold water


Availability


Updating Calendar

<
 
MTWTFSS
       
       
       
       
       
       
 
MTWTFSS
       
       
       
       
       
       
 
MTWTFSS
       
       
       
       
       
       
 
 
 
MTWTFSS
       
       
       
       
       
       
 
MTWTFSS
       
       
       
       
       
       
 
MTWTFSS
       
       
       
       
       
       
>

For information about rates or to make a booking.

 
available day

 
Not available


Location details for Casa Di Marina

  • Distance from:
  • 10 minutes drive from Roma (3 miles)
  • 2 hours 4 minutes drive from Perugia (108 miles)


(All distances and times are approximations)