** more Venice properties

Casa San Polo

San Polo - Calle Ca' Muti, Venezia (ve), Veneto, Italy

Property Ref:
IVV179

Bedrooms:
2

Sleeps:
4

Pets:
No

Shortlist:

Main picture for Casa San Polo
Photo of Casa San Polo
  • Photo of Casa San Polo
  • Casa San Polo thumbnail 1
  • Casa San Polo thumbnail 2
  • Casa San Polo thumbnail 3
  • Casa San Polo thumbnail 4
  • Casa San Polo thumbnail 5
  • Casa San Polo thumbnail 6
  • Casa San Polo thumbnail 7
  • Casa San Polo thumbnail 8


Description of Casa San Polo

Elegant holiday apartment in the heart of the incomparable city of Venice, exactly in the central Sestriere di San Polo, two hundred meters from one of the most visited and famous monuments: the Rialto Bridge. You reach the apartment from the vaporetto stop going only 200 meters crossing the famous ancient streets of Venice in just five minutes. The apartment is located on the first floor of an ancient Venetian palace, just 100 meters from the famous Palazzo Grassi exhibition site, which hosts world-class art exhibitions throughout the year.

Features of Casa San Polo

  • 1 TV
  • Microwave
  • Dishwasher
  • City of art
  • Freezer Box
  • Gas heating
  • Refrigerator
  • Electric hobs
  • Washing machine
  • Holiday apartment
  • Golf course nearby
  • Kitchenette; h/c water
  • Wireless internet (free)


Availability


Updating Calendar

<
 
MTWTFSS
       
       
       
       
       
       
 
MTWTFSS
       
       
       
       
       
       
 
MTWTFSS
       
       
       
       
       
       
 
 
 
MTWTFSS
       
       
       
       
       
       
 
MTWTFSS
       
       
       
       
       
       
 
MTWTFSS
       
       
       
       
       
       
>

For information about rates or to make a booking.

 
available day

 
Not available


Location details for Casa San Polo

(Map marker is an approximate location, precise location provided upon booking)
  • Distance from:
  • 7 minutes drive from Venezia (1 mile)
  • 2 hours 6 minutes drive from Izola (116 miles)


(All distances and times are approximations)